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Abstract

In this study we employed the Monte Carlo/Latin Hypercube
sampling technique to generate input parameters for aliquid
polymeric-film drying model with prescribed uncertainty
distributions. The one-dimensional drying model employed
in this study was that developed by Cairncross et al.* We
found that the non-deterministic analysis with Monte Carlo/
Latin Hypercube sampling provides a useful tool for
characterizing the two responses (residual solvent volume
and the maximum solvent partial vapor pressure) of aliquid
polymeric-film drying process. More precisely, we found
that the non-deterministic analysis viaMonte Carlo/Latin
Hypercube sampling not only provides estimates of
statistical variations of the response variables but also yields
more realistic estimates of mean values, which can differ
significantly from those calculated using deterministic
simulation. For input-parameter uncertainties in the range
from two to ten percent of their respective means, variations
of response variables were found to be comparable to the
mean values.

Introduction

In recent years advances in computer hardware and numerical
analysis have made it possible to model, theoretically, many
complex engineering processes such as liquid polymeric-film
drying; and systematic ‘ numerical experiments an be carried
out on a computer for the purpose of process design and
optimization before any testing is conducted on an actual
apparatus. These process simulations are often done in a
deterministic fashion, i.e., process conditions and physical
properties involved are usually taken to be precisely known.
In red-world processes, however, some levels of
uncertainties are aways present. At issue is how to
characterize the responses of processes such as liquid
polymeric-film drying given uncertainties in both process
conditions and physical properties.

After being freshly coated onto a substrate support, a
liquid polymeric coating is usualy solidified by hot-air
convection drying. This is an important manufacturing
process for producing imaging/information-recording
products such as photographic and xerographic films, and
video and audio tapes. The heat and mass transfer involved in
such adrying process can be predicted via numerical analysis
as demonstrated by Cairncross et al.*

However, uncertainties abound in both physica
properties and process conditions such as solvent-diffusion
coefficient, heat and mass transfer coefficients, and oven
temperature. Two relevant response variables that are of
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practical interest are theresidual solvent volume and the
maximum solvent partial vapor pressure. The former
determines the extent of dryness of the coated film after
drying and the latter controls bubble formation in the coated
film. To prevent the coated film from sticking on the
conveying roll surfaces, the residua solvent volume must be
below a certain level when the dried film exits the oven.
Also, the maximum solvent partial vapor pressure must be
less than the oven ambient pressure (normally 1 atm) in
order to avoid bubble formation, which can give rise to
various coating defects.

In the present study we employed the one-dimensional
computer model developed by Cairncross® in computing the
two response variables of residual solvent volume at the
oven exit and maximum solvent partial vapor pressure inside
the oven. In this model, there are twelve parameters
associated with estimation of the binary mutual diffusion
coefficient. In addition, there are another rune input
parameters associated with physical/transport properties
(e.g., heat and mass transfer coefficients) and process
conditions (e.g., oven temperature). In all, there are 21 input
parameters required for computing the two response variables
chosen in this study.

In the present study, only the following three of the 21
input parameters were assigned uncertainty distributions
(i.evary doatistically within prescribed bounds): the
pre-exponential factor of the diffusion coefficient (Dol), the
ratio of solvent and (T ). The first two are key parametersin
estimating the diffusion coefficient. Effects of uncertainties
of the above three input parameters on the two response
variables were examined using non-deterministic analysisvia
Monte Carlo/Latin Hypercube sampling.

The Deterministic Drying M odel

Details of the deterministic one-dimensional drying model
have been documented elsewhere.' 2 Briefly, the heat and
mass transfer are described by transient one-dimensional
convection-diffusion equations of energy and mass
conservations. Because the liquid film is thin, lateral
variations in composition, temperature and film thickness
are negligible. Mass conservation accounts for Fickian
diffusion of the solvent relative to a zero volume-averaged
velocity, which results from the impermeability of the
substrate and the ideal solution assumption (no volume
change on mixing). For simplicity the present study
neglects chemical reactions and radiant heating. Energy
conservation describes heat conduction in the film with a
constant thermal diffusivity, which isjustified because heat
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conduction in liquids is much faster than mass transfer and
the resulting temperature gradients are small.

Heat is added to the coated film from both the
evaporating and the substrate surfaces. The evaporated
solvent vapor is removed from the vapor/liquid interface and
carried away by the hot air convective motion. The mass and
thermal fluxes across the evaporating surface can be
conveniently approximated by using, respectively, mass and
heat transfer coefficients. Heat transfer coefficients for air
jets impinging on a flat surface can be estimated by
experimentally determined empirical correlations (see, e.g.,
Ref.3). Once the heat transfer coefficient is known, the mass
transfer  coefficient can be caculated using the
Chilton-Colburn analogy. As solvent evaporation proceeds
and the liquid polymeric film solidifies, the solvent
diffusivity drops precipitously. Consequently, the drying
process or rate of solvent removal is often controlled by the
dynamic solvent diffusivity. Since direct measurement of
solvent diffusivity is normally very difficult, it is estimated
from the free volume theory, which requires atotal of twelve
parameters. For several well-known  solvent-polymer
systems (e.g., Toluene-Polystyrene), it has been shown that
these twelve parameters can be estimated using solvent
viscosity and density data and a smal amount of
thermodynamic and diffusivity data. Again, significant levels
of uncertainty in value of the diffusion coefficient obtained
this way will be expected.

Monte Carlo Sampling Techniques

Once the input parameters and their ranges of statistical
variations are identified, run data (i.e., parameters used to
describe physical properties and process conditions) can be
generated using the completely random sampling (or simple
sampling) technique or the more efficient sampling
techniques such as a constrained randomization sampling
technique, namely the Latin Hypercube sampling (LHS)
technique. For the same level of accuracy in response
variable(s), it has been shown that LHS outperforms simple
sampling significantly with respect to number of
observation or runs required. As will be shown later in this
paper, LHS can reduce the number of runs (for achieving the
same level of convergence) by as much as an order of
magnitude.

LHS was originally developed by Mckay, Conover and
Beckman®. Briefly, LHS generates run data, i.e., selecting n
(here, nis the number of observations or runs) different
values for each run from each of k input variables X,,..., X,,
asfollows®: the range of each input variable is divided into n
nonoverlapping intervals on the basis of equal probability;
one value from each interval is sdected at random with
respect to the probability density in the interval; the n
values thus obtained for X, are paired in a random manner
(equally likely combinations) with the n values of X,; these
n pairs are combined in arandom manner with the n values
of Xgtoform n triplets, and so on, until n k-tuplets are
formed. The LHS computer subroutine used in the present
study was originally developed by Iman et al.® at Sandia
National Laboratories.
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Results and Discussion

The non-deterministic analysis of the liquid polymeric-film
drying process can be summarized as follows: Monte Carlo/
LHS sampling techniques were used to generate values of
the three input parameters that were sdected to vary
statistically within prescribed bounds (values of the other 18
input parameters were fixed). Once values of the three input
parameters were available, the deterministic drying computer
model was employed to compute the two response variables
of interest. After responses were computed for each
observation or run, statistics of the two response variables
were determined.

In the deterministic drying computer model, the set of
time-dependent, highly nonlinear partial differentia
equations that govern the drying/solidification dynamics are
first reduced to a system of differential algebraic residua
equations by employing Galerkin’s method with finite
dement basis functions (for details, see Ref. 2). The
dynamic system of residual differential-algebraic eguations
are then solved by wusing DASSL, a robust
differential/algebraic system solver.” In computing the two
response variables reported here, 44 unknowns (or degrees of
freedom) were employed; the required CPU time (for each
run) ranges from about 9 seconds (on a Sun SPARCstation
20), to about 2.7 seconds (on a IBM SP2), to about 1.9
seconds (on a Cray Y-MP) for integrating the equations from
theinitial wet coating to the final dry coating with the total
drying time set to 30 seconds.

Table 1 lists the base case values of the three input
parameters selected to vary and values of the other 18 input
parameters used in the present study; here, abinary Toluene-
Polystyrene system was considered and a single-zone drying
oven was employed.

Effect of Number of Observations on
Convergence

Figures 1 and 2 show effect of number of observations on
convergence of predicted mean value and standard deviation
of residual solvent volume and maximum solvent partial
vapor pressure, using simple sampling and LHS. Here, a
lognormal distribution with an input mean vaue of
4.82x108 m2/s and an error factor of 4 (dimensionless) was
assigned to the pre-exponentia factor, Dol; a normal
distribution with a mean of 0.85 and a standard deviation of
0.045 was specified for the ratio of solvent and polymer
jumping units, t; lastly, a normal distribution with a mean
value of 116 °C and a standard deviation of 11.6 °C was
chosen for the oven temperature, T1.

For the mean value of residual solvent volume, it takes
only about 50 runs to obtain an estimate of its converged
value to within 1% (here, the converged value is taken to be
that calculated with 10,000 runs using LHS) using LHS
whereas more than 2,000 runs are required to achieve the
same level of convergence using simple sampling. For the
mean value of the maximum solvent partial vapor pressure,
only 20 runs are needed to approximate its converged value
to within 1% using LHS whereas more than 300 runs are
required using simple sampling. For the standard deviation



IS8 T's 50th Annual Conference

of residual solvent volume, it takes about 400 runs to obtain
the 99% convergence (i.e., reduce the error to within 1%)
using LHS whereas more than 2,000 runs are necessary

using simple sampling. For the standard deviation of the

maximum solvent partial vapor pressure, the required
number of runs to reduce the estimate error to within 1 %
are about 700 and more than 4,000, respectively for using
LHS and simple sampling.
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Figure 1. Effect of number of observations on convergence of
predicted residual solvent volume (with unbounded lognormal
distribution i: (a) mean value; (b) standard deviation.

In short, for the mean value estimate, LHS outperforms
simple sampling by more than an order of magnitude. For
the standard-devietion estimate, the LHS results in run-
number reduction by afactor of five or more when compared
with the simple sampling. For response calculations that
reguire intensive CPU time, reduction in the number of runs
needed to achieve the desired level of convergence translates
into huge savings in computational costs.

Itis informative to compare predictions of the two
response variables computed from deterministic simulations
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with that determined from nondeterministic analysis. Using
the respective mean values as input to the deterministic
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Figure 2. Effect of number of observations on convergence of
predicted maximum solvent partial vapor pressure (with
unbounded lognormal distribution): (a) mean value; (b) standard
devuation.

model, the residual solvent volume (per unit area of drying
surface) was calculated to be 120.85 mm and the maximum
solvent partial pressure to be 1.0197 atm. With the
distribution functions and degrees of scattering for the three
input parameters chosen here, the nondeterministic model
(with LHS) yidded an estimate of 658.73 nmm as the
expected or mean value for the residual solvent volume and
the corresponding standard deviation of 825.22 nm; for the
maximum solvent partial vapor pressure, the estimates were
1.0523 atm and 0.2705 atm, respectively for the mean value
and the standard deviation. In short, the mean value of
maximum solvent partial vapor pressure estimated from
nondeterministic analysis differs from that calculated from
the deterministic model by a mere 3.1% but the
corresponding standard deviation was found to be quite
significant (24.4% of the mean value). As for the residual
solvent volume, the mean value estimated from the
nondeterministic model is 5.45 times of that calculated from
the deterministic model; moreover, the estimated standard
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deviation is actualy greater than the mean value. This
implies that the chosen degrees of scattering for the three
input parameters are too high (particularly for the oven
temperature) and the estimates are not reliable. In other
words, the standard deviations for the three input parameters
need to be smaller in order to obtain realistic estimates for
the residual solvent volume. In practice, to obtain lower
degrees of scattering of the input-parameter data certainly
demands better measurement techniques and more precise
instruments. In any case, as demonstrated here,
nondeterministic anaysis provides a useful tool for
determining the statistical variations of response variablesin
manufacturmg proc&ses like Ilqwd ponmenc -film drylng

~ 12

-

(a)

-
o

o
©

Bounded nommal {4 sigma)

o
©

ounded normal (3 sigma)

Mean Values of Residual Solvent Volume (in units of h0)

0.7
W mem e

0.6

0.5

0.4 (o)Bounded normal (1 sigma)

{*)uniform and maximum entropy distributions
03 . . L
1 10 100 1000 10000
Number of Observations {or runs)
22
4
2 20t
k]
2 187t
5 (b)
£ 16}
p-3
£
) 141 Bounded nomal (4 sigma)
5 12}
3
T 1.0 +
2
g 08¢
o
E 0.6 |
f o4t
<]
B 02} 3
§ | AN i
& oo} o0)Bounded normal {1 sigma)
{*)Uniform and mammum entropy distributions
-0.2 L ;

10 100 10000

Number of Observations {or runs)
Figure 3. Effect of distribution types and specifications on
convergence of predicted residual solvent volume: (a) mean
value; (b) standard deviation. (Here, sigma denotes the standard
deviation in the three input parameters chosen to vary).
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Effect of Uncertainty-
distribution-function Types

To generate input parameters using either simple sampling
or LHS, we must specify the types of uncertainty
distributions. It is certainly ideal if we have complete
descriptions of the uncertainty distributions (e.g., via proper
measurements). But more often than not, only very limited
information regarding the uncertainty distributions is

551

Copyright 1997, IS& T

known. In this case, how an analyst chooses an uncertainty
distribution becomes a very relevant question. If only the
lower and upper bounds of a distribution are known, one
may want to start with the uniform distribution. If the mean
or expected value is also available, one can use the
maximum entropy (i.e. atruncated exponential) distribution.
When both mean value and standard deviation are known,
one can certainly employ the normal distribution, which
provides a more complete description over either the uniform
or maximum entropy distribution.
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Figure 4 Effect of distribution types and specifications on
convergence of predicted maximum solvent partial vapor
pressure: (a) mean value; (b) standard deviation. (Here, sigma
denotes the standard deviation in the three input parameters

chosen to vary).

To examine effects of distribution types on statistics of
response variables, we computed predictions of mean value
and standard deviation for the residual solvent volume and
the maximum solvent partial vapor pressure, using uniform,
maximum entropy, and bounded normal distributions with
various standard deviations, respectively. The results are
plotted in Figures 3 & 4. In all cases, three input
pararneters, the pre-exponential factor (D), the ratio of
solvent and polymer jumping units (X), and the oven
temperature (T1), were varied statistically and assigned the
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same type of distribution function. Here, the lower bound
for Dy, was set to 4.338" 10® m?s and the upper bound to
5.302" 10® m?s; for X, the lower bound was 0.765 and the
upper bound 0.935; Ti has alower bound of 114°C and an
upper bound of 118 °C. For the maximum entropy
distribution, mean values of 4.82" 10® m?s, 0.85 and 116°C
were specified, respectively for Dy, x , and Ti; and the lower
and upper bounds were set identically as that for the case of
uniform distribution. In the case of bounded normal
distribution, the lower and upper bounds and the mean value
were the same as that for the case of maximum entropy
distribution; four different sets of standard deviations were
specified: in the basecase set, standard deviationsfor Dy, X ,
and TT were set to 0.241° 10® m%s, 0.0425 and 1.16°C,
respectively; in the second set, each standard deviation was
doubled, e.g. D, now has a standard deviation of 0.482" 10°®
m?s; in the third set, each standard deviation was tripled,
e.g. Dy Inow has a standard deviation of 0.723 “ 108 m?/s;
in the fourth set, each standard deviation was quadrupled, e.g.
D, now has a standard deviation of 0.964" 10® m?/s.
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Asshown in Figures 3 & 4, statistics of the two
response variables caculated using the uniform and
maximum entropy distributions are very close, to within
five significant figures (it should be pointed that both the
uniform and maximum entropy distribution functionsyield
spurious estimates, i.e., spikes, at run numbers of 300 and
4000, respectively; what causes this is not clear to the
authors at this point). The bounded normal distribution with
small sandard deviations yields statistics close to that
predicted with both the uniform and maximum entropy
distributions. As the input data become more scattered (i.e.
the standard deviation varies but the mean value is kept the
same), however, discrepanciesrise rapidly. In Figure 5, the
mean values of resdua solvent volume and maximum
solvent partial pressure estimated from the nondeterministic
model with different input distribution functions are further
compared with that calculated from the deterministic model.
For residual solvent volume, estimates obtained using the
uniform and maximum entropy distribution functions are
very close, and they differ only slightly from that using the
bounded normal distribution function with small sandard
deviations. But the discrepancy rises rapidly as input data
become more scattered. The same is true for maximum
solvent partial vapor pressure though the effects are much
smaller.

I'n short, with the small uncertainties as specified here
for the three input parameters, the effect on the predicted
residual solvent volume is significant but the effect on the
maximum solvent partial vapor pressure is small. For the
residual solvent volume, its calculated standard deviation is
nearly 30% of its predicted mean value. For the maximum
solvent partial vapor pressure, its standard deviation was
estimated to be more than 3%.

Again, it should be noted that the uncertainty levels
chosen in this sub-section are less than that specified in the
previous sub-section on the effects of number of
observations, moreover, unbounded normal and lognormal
distributions were used in that previous sub-section whereas
bounded distribution functions were employed in this sub-
section.

Summary and Conclusions

It was demonstrated in the present study that the
nondeterministic analysis with  Monte Carlo/Latin
Hypercube sampling provides a useful tool for characterizing
the two responses (residua solvent volume and the
maximum solvent partial vapor pressure) of a liquid
polymeric-film drying process subject to uncertaintiesin the
three input parameters. pre-exponential factor of the
diffusivity, the ratio of solvent and polymer jumping units,
and the oven temperature. By employing the Latin
Hypercube Sampling technique, we were able to reduce the
number of observations or runs required to achieve the same
level of convergence for the response variables by as much
as an order of magnitude when compared with using simple
sampling. Also, the uncertainty-distribution types were
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shown to affect variations of response variables, which
implies that accurate characterization of uncertainty
distributions of the input parameters are necessary in
obtaining objective assessment of the statistical variations
of response variables of the liquid polymeric-film drying
process. We found that the non-deterministic analysis via
Monte Carlo/Latin Hypercube sampling not only provides
estimates of statistical variations of the response variables
but also yields more redlistic estimates of mean values,
which can differ significantly from that calculated using
deterministic simulation. For input-parameter uncertainties
in the range from two to ten percent of their respective
means, variations of response variables were found to be
comparable to the mean values.

* This work was supported by the United States Department of
Energy under contract DE-AC04-94AL85000. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of
Energy.
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Table 1. Input Parametersin the Base Case

Do 4.82° 10 m?/s

X 0.82

c 0.393

E/R 0 °K

Vo 1.154° 10° m*/kg
A% 0.970" 10° m®/kg
vV, 0.917" 10° m/kg
V', 0.728" 10° m’/kg
Ku/g

K12 - Tgl

Ky/g

Ky - To

Ti 116 °c

C, 1254 J/kgl°C
DH, 8.8 10* J/kg/°C
k 0.326 kg m/s*/°K
P, 0 atm

Ras 3.96" 10° kg/s*/°K
Res 3.96" 10° kg/s*/°K
Ke 0.132 m/s

h, 250 nm

t 30 S

Note: the first 12 parameters are associated with estimation of
diffusion coefficient. C, is heat capacity, DH, heat of vaporiza-
tion, k thermal conductivity, P°,oven ambient partial vapor
pressure, hgg heat transfer coefficient at the substrate surface, heg
heat transfer coefficient at the drying surface, k,; mass transfer
coefficient, h, initial wet liquid polymeric-film thickness, and t
drying time. In the present study, the three input parameters that
were varied statistically within prescribed bounds are: pre-
exponential factor, D,; the ratio of solvent and polymer
jumping units, x; and oven temperature, Ti.



